Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 18(11): e2300053, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37424196

RESUMO

Cultivating Chinese hamster ovary (CHO) cells in microtiter plates (MTPs) with time-resolved monitoring of the oxygen transfer rate (OTR) is highly desirable to provide process insights at increased throughput. However, monitoring of the OTR in MTPs has not been demonstrated for CHO cells, yet. Hence, a CHO cultivation process was transferred from shake flasks to MTPs to enable monitoring of the OTR in each individual well of a 48-well MTP. For this, the cultivation of an industrially relevant, antibody-producing cell line was transferred from shake flask to MTP based on the volumetric oxygen mass transfer coefficient (kL a). Culture behavior was well comparable (deviation of the final IgG titer less than 10%). Monitoring of the OTR in 48-well MTPs was then used to derive the cytotoxicity of dimethyl sulfoxide (DMSO) based on a dose-response curve in a single experiment using a second CHO cell line. Logistic fitting of the dose-response curve determined after 100 h was used to determine the DMSO concentration that resulted in a cytotoxicity of 50% (IC50). A DMSO concentration of 2.70% ± 0.25% was determined, which agrees with the IC50 previously determined in shake flasks (2.39% ± 0.1%). Non-invasive, parallelized, and time-resolved monitoring of the OTR of CHO cells in MTPs was demonstrated and offers excellent potential to speed up process development and assess cytotoxicity.


Assuntos
Técnicas de Cultura de Células , Oxigênio , Cricetinae , Animais , Células CHO , Oxigênio/metabolismo , Cricetulus , Técnicas de Cultura de Células/métodos , Dimetil Sulfóxido , Reatores Biológicos
2.
Biotechnol Bioeng ; 120(10): 2925-2939, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350126

RESUMO

Online fluorescence monitoring has become a key technology in modern bioprocess development, as it provides in-depth process knowledge at comparably low costs. In particular, the technology is widely established for high-throughput microbioreactor cultivation systems, due to its noninvasive character. For microtiter plates, previously also multi-wavelength 2D fluorescence monitoring was developed. To overcome an observed limitation of fluorescence sensitivity, this study presents a modified spectroscopic setup, including a tunable emission monochromator. The new optical component enables the separation of the scattered and fluorescent light measurements, which allows for the adjustment of integration times of the charge-coupled device detector. The resulting increased fluorescence sensitivity positively affected the performance of principal component analysis for spectral data of Escherichia coli batch cultivation experiments with varying sorbitol concentration supplementation. In direct comparison with spectral data recorded at short integration times, more biologically consistent signal dynamics were calculated. Furthermore, during partial least square regression for E. coli cultivation experiments with varying glucose concentrations, improved modeling performance was observed. Especially, for the growth-uncoupled acetate concentration, a considerable improvement of the root-mean-square error from 0.25 to 0.17 g/L was achieved. In conclusion, the modified setup represents another important step in advancing 2D fluorescence monitoring in microtiter plates.


Assuntos
Reatores Biológicos , Escherichia coli , Fluorescência , Tecnologia
3.
J Biol Eng ; 17(1): 12, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782293

RESUMO

BACKGROUND: Non-invasive online fluorescence monitoring in high-throughput microbioreactors is a well-established method to accelerate early-stage bioprocess development. Recently, single-wavelength fluorescence monitoring in microtiter plates was extended to measurements of highly resolved 2D fluorescence spectra, by introducing charge-coupled device (CCD) detectors. Although introductory experiments demonstrated a high potential of the new monitoring technology, an assessment of the capabilities and limits for practical applications is yet to be provided. RESULTS: In this study, three experimental sets introducing secondary substrate limitations of magnesium, potassium, and phosphate to cultivations of a GFP-expressing H. polymorpha strain were conducted. This increased the complexity of the spectral dynamics, which were determined by 2D fluorescence measurements. The metabolic responses upon growth limiting conditions were assessed by monitoring of the oxygen transfer rate and extensive offline sampling. Using only the spectral data, subsequently, partial least-square (PLS) regression models for the key parameters of glycerol, cell dry weight, and pH value were generated. For model calibration, spectral data of only two cultivation conditions were combined with sparse offline sampling data. Applying the models to spectral data of six cultures not used for calibration, resulted in an average relative root-mean-square error (RMSE) of prediction between 6.8 and 6.0%. Thus, while demanding only sparse offline data, the models allowed the estimation of biomass accumulation and glycerol consumption, even in the presence of more or less pronounced secondary substrate limitation. CONCLUSION: For the secondary substrate limitation experiments of this study, the generation of data-driven models allowed a considerable reduction in sampling efforts while also providing process information for unsampled cultures. Therefore, the practical experiments of this study strongly affirm the previously claimed advantages of 2D fluorescence spectroscopy in microtiter plates.

4.
Bioengineering (Basel) ; 9(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134983

RESUMO

Multi-wavelength (2D) fluorescence spectroscopy represents an important step towards exploiting the monitoring potential of microtiter plates (MTPs) during early-stage bioprocess development. In combination with multivariate data analysis (MVDA), important process information can be obtained, while repetitive, cost-intensive sample analytics can be reduced. This study provides a comprehensive experimental dataset of online and offline measurements for batch cultures of Hansenula polymorpha. In the first step, principal component analysis (PCA) was used to assess spectral data quality. Secondly, partial least-squares (PLS) regression models were generated, based on spectral data of two cultivation conditions and offline samples for glycerol, cell dry weight, and pH value. Thereby, the time-wise resolution increased 12-fold compared to the offline sampling interval of 6 h. The PLS models were validated using offline samples of a shorter sampling interval. Very good model transferability was shown during the PLS model application to the spectral data of cultures with six varying initial cultivation conditions. For all the predicted variables, a relative root-mean-square error (RMSE) below 6% was obtained. Based on the findings, the initial experimental strategy was re-evaluated and a more practical approach with minimised sampling effort and elevated experimental throughput was proposed. In conclusion, the study underlines the high potential of multi-wavelength (2D) fluorescence spectroscopy and provides an evaluation workflow for PLS modelling in microtiter plates.

5.
Biotechnol J ; 17(8): e2100677, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35377965

RESUMO

BACKGROUND: Shake flasks are frequently used for mammalian cell suspension cultures. For process development and routine culture monitoring, information on culture behavior is needed early on. MAIN METHODS AND MAJOR RESULTS: Here, cell-specific oxygen uptake rates (qO2 ) of two CHO cell lines were determined from shake flask experiments by simultaneous measurement of oxygen transfer rates (OTR) and viable cell concentrations (VCC). For cell line one, qO2 decreased from 2.38·10-10  to 1.02·10-10  mmol cell-1  h-1 during batch growth. For cell line two, qO2 was constant (1.90·10-10  mmol h-1 ). Determined qO2 values were used to calculate the VCC from OTR data. Cumulated oxygen consumption and glucose consumption were correlated for both cell lines and enabled calculation of glucose concentrations from OTR data. IgG producing cell line one had an oxygen demand of ∼15 mmoloxygen gglucose -1 , cell line two consumed ∼5 mmoloxygen gglucose -1 . The established correlations for determination of VCC and glucose were successfully transferred to subsequent cultivations for both cell lines. Combined measurement of the OTR and the carbon dioxide transfer rate enabled quantitative determination of the lactate concentration (production and consumption) without sampling. CONCLUSIONS AND IMPLICATIONS: Taken together, non-invasive measurement of the respiration activity enabled time-resolved determination of key culture parameters for increased process understanding in shake flasks.


Assuntos
Reatores Biológicos , Oxigênio , Animais , Células CHO , Cricetinae , Cricetulus , Glucose/metabolismo , Oxigênio/metabolismo , Respiração
6.
Biotechnol Prog ; 38(3): e3245, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170260

RESUMO

The red pigment prodigiosin is of high pharmaceutical interest, due to its potential applications as an antitumor drug and antibiotic agent. As previously demonstrated, Pseudomonas putida KT2440 is a suitable host for prodigiosin production, as it exhibits high tolerance toward the antimicrobial properties of prodigiosin. So far, prodigiosin concentrations of up to 94 mg/L have been achieved in shake flask cultivations. For the characterization and optimization of the prodigiosin production process, the scattered light of P. putida and fluorescence of prodigiosin was measured. The excitation and emission wavelengths for prodigiosin measurement were analyzed by recording 2D fluorescence spectra. The strongest prodigiosin fluorescence was obtained at a wavelength combination of 535/560 nm. By reducing the temperature to 18 °C and using 16 g/L glucose, the prodigiosin concentration was more than doubled compared with the initial cultivation conditions. The obtained results demonstrate the capabilities of parallelized microscale cultivations combined with noninvasive online monitoring of fluorescence for rapid bioprocess development, using prodigiosin as a molecule of current biotechnological interest.


Assuntos
Pseudomonas putida , Antibacterianos , Fluorescência , Glucose , Prodigiosina
8.
J Hazard Mater ; 426: 127800, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865895

RESUMO

A key aspect of the transformation of the economic sector towards a sustainable bioeconomy is the development of environmentally friendly alternatives for hitherto used chemicals, which have negative impacts on environmental health. However, the implementation of an ecotoxicological hazard assessment at early steps of product development to elaborate the most promising candidates of lowest harm is scarce in industry practice. The present article introduces the interdisciplinary proof-of-concept project GreenToxiConomy, which shows the successful application of a Green Toxicology strategy for biosurfactants and a novel microgel-based pesticide release system. Both groups are promising candidates for industrial and agricultural applications and the ecotoxicological characterization is yet missing important information. An iterative substance- and application-oriented bioassay battery for acute and mechanism-specific toxicity within aquatic and terrestrial model species is introduced for both potentially hazardous materials getting into contact with humans and ending up in the environment. By applying in silico QSAR-based models on genotoxicity, endocrine disruption, skin sensitization and acute toxicity to algae, daphnids and fish, individual biosurfactants resulted in deviating toxicity, suggesting a pre-ranking of the compounds. Experimental toxicity assessment will further complement the predicted toxicity to elaborate the most promising candidates in an efficient pre-screening of new substances.


Assuntos
Microgéis , Praguicidas , Animais , Ecotoxicologia , Peixes , Substâncias Perigosas , Humanos , Praguicidas/toxicidade
9.
Front Bioeng Biotechnol ; 9: 725498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513814

RESUMO

Cultivations of mammalian cells are routinely conducted in shake flasks. In contrast to instrumented bioreactors, reliable options for non-invasive, time-resolved monitoring of the culture status in shake flasks are lacking. The Respiration Activity Monitoring Respiration Activity Monitoring System system was used to determine the oxygen transfer rate (OTR) in shake flasks. It was proven that the OTR could be regarded as equal to the oxygen uptake rate as the change of the dissolved oxygen concentration in the liquid phase over time was negligibly small. Thus, monitoring the oxygen transfer rate (OTR) was used to increase the information content from shake flask experiments. The OTR of a Chinese hamster ovary cell line was monitored by applying electrochemical sensors. Glass flasks stoppered with cotton plugs and polycarbonate flasks stoppered with vent-caps were compared in terms of mass transfer characteristics and culture behavior. Similar mass transfer resistances were determined for both sterile closures. The OTR was found to be well reproducible within one experiment (standard deviation <10%). It correlated with changes in cell viability and depletion of carbon sources, thus, giving more profound insights into the cultivation process. Culture behavior in glass and polycarbonate flasks was identical. Monitoring of the OTR was applied to a second culture medium. Media differed in the maximum OTR reached during cultivation and in the time when all carbon sources were depleted. By applying non-invasive, parallelized, time-resolved monitoring of the OTR, the information content and amount of data from shake flask experiments was significantly increased compared to manual sampling and offline analysis. The potential of the technology for early-stage process development was demonstrated.

10.
Essays Biochem ; 65(2): 365-379, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-33860800

RESUMO

Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.


Assuntos
Ustilago , Biotecnologia , Fungos , Plantas , Ustilago/genética , Zea mays/microbiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-32974309

RESUMO

Rhamnolipids are biosurfactants produced by microorganisms with the potential to replace synthetic compounds with petrochemical origin. To promote industrial use of rhamnolipids, recombinant rhamnolipid production from sugars needs to be intensified. Since this remains challenging, the aim of the presented research is to utilize a multidisciplinary approach to take a step toward developing a sustainable rhamnolipid production process. Here, we developed expression cassettes for stable integration of the rhamnolipid biosynthesis genes into the genome outperformed plasmid-based expression systems. Furthermore, the genetic stability of the production strain was improved by using an inducible promoter. To enhance rhamnolipid synthesis, energy- and/or carbon-consuming traits were removed: mutants negative for the synthesis of the flagellar machinery or the storage polymer PHA showed increased production by 50%. Variation of time of induction resulted in an 18% increase in titers. A scale-up from shake flasks was carried out using a 1-L bioreactor. By recycling of the foam, biomass loss could be minimized and a rhamnolipid titer of up to 1.5 g/L was achieved without using mechanical foam destroyers or antifoaming agents. Subsequent liquid-liquid extraction was optimized by using a suitable minimal medium during fermentation to reduce undesired interphase formation. A technical-scale production process was designed and evaluated by a life-cycle assessment (LCA). Different process chains and their specific environmental impact were examined. It was found that next to biomass supply, the fermentation had the biggest environmental impact. The present work underlines the need for multidisciplinary approaches to address the challenges associated with achieving sustainable production of microbial secondary metabolites. The results are discussed in the context of the challenges of microbial biosurfactant production using hydrophilic substrates on an industrial scale.

12.
Biotechnol Prog ; 36(2): e2911, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31513739

RESUMO

Secretion of heterologous proteins into the culture supernatant in laboratory strains of Escherichia coli is possible by utilizing a Type I secretion system (T1SS). One prominent example for a T1SS is based on the hemolysin A toxin. With this system, heterologous protein secretion has already been achieved. However, no cultivations in a defined mineral medium and in stirred tank bioreactors have been described in literature up to now, hampering the broad applicability of the system. In this study, a mineral medium was developed for cultivation under defined conditions. With this medium, the full potential and advantage of a secretion system in E. coli (low secretion of host proteins, no contamination with proteins from complex media compounds) can now be exploited. Additionally, quantification of the protein amount in the supernatant was demonstrated by application of the Bradford assay. In this work, host cell behavior was described in small scale by online monitoring of the oxygen transfer rate. Scalability was demonstrated by stirred tank fermentation yielding 540 mg/L HlyA1 in the supernatant. This work enhances the applicability of a protein secretion system in E. coli and paves the way for an industrial application.


Assuntos
Meios de Cultura/metabolismo , Escherichia coli/metabolismo , Minerais/metabolismo , Sistemas de Secreção Tipo I/metabolismo
13.
J Biotechnol ; 307: 148-163, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31715206

RESUMO

Microbial valorization of plant biomass is a key target in bioeconomy. A promising candidate for consolidated bioprocessing is the dimorphic fungus Ustilago maydis. It harbors hydrolytic enzymes to degrade biomass components and naturally produces valuable secondary metabolites like itaconic acid, malic acid or glycolipids. However, hydrolytic enzymes are mainly expressed in the hyphal form. This type of morphology should be prevented in industrial fermentation processes. Genetic activation of these enzymes can enable growth on cognate substrates also in the yeast form. Here, strains were engineered for growth on polygalacturonic acid as major component of pectin. Besides activation of intrinsic enzymes, supplementation with heterologous genes for potent enzymes was tested. The presence of an unconventional secretion pathway allowed exploiting fungal and bacterial enzymes. Growth of the engineered strains was evaluated by a recently developed method for online determination of residual substrates based on the respiration activity. This enabled the quantification of the overall consumed substrate as a key asset for the assessment of the enzyme degradation potential even on polymeric substrates. Co-fermentation of endo- and exo-polygalacturonase overexpression strains resulted in efficient growth on polygalacturonic acid. In the future, the approach will be extended to establish efficient degradation and valorization of pectin.


Assuntos
Biologia Computacional , Pectinas/metabolismo , Plantas/microbiologia , Ustilago/enzimologia , Sequência de Aminoácidos , Biomassa , Fermentação , Hifas , Especificidade de Órgãos , Plantas/metabolismo , Alinhamento de Sequência , Ustilago/genética , Ustilago/crescimento & desenvolvimento
14.
Sci Rep ; 10(1): 22448, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33384450

RESUMO

Microbial induced calcite precipitation (MICP) based on ureolysis has a high potential for many applications, e.g. restoration of construction materials. The gram-positive bacterium Sporosarcina pasteurii is the most commonly used microorganism for MICP due to its high ureolytic activity. However, Sporosarcina pasteurii is so far cultivated almost exclusively in complex media, which only results in moderate biomass concentrations at the best. Cultivation of Sporosarcina pasteurii must be strongly improved in order to make technological application of MICP economically feasible. The growth of Sporosarcina pasteurii DSM 33 was boosted by detecting auxotrophic deficiencies (L-methionine, L-cysteine, thiamine, nicotinic acid), nutritional requirements (phosphate, trace elements) and useful carbon sources (glucose, maltose, lactose, fructose, sucrose, acetate, L-proline, L-alanine). These were determined by microplate cultivations with online monitoring of biomass in a chemically defined medium and systematically omitting or substituting medium components. Persisting growth limitations were also detected, allowing further improvement of the chemically defined medium by the addition of glutamate group amino acids. Common complex media based on peptone and yeast extract were supplemented based on these findings. Optical density at the end of each cultivation of the improved peptone and yeast extract media roughly increased fivefold respectively. A maximum OD600 of 26.6 ± 0.7 (CDW: 17.1 ± 0.5 g/L) was reached with the improved yeast extract medium. Finally, culture performance and media improvement was analysed by measuring the oxygen transfer rate as well as the backscatter during shake flask cultivation.


Assuntos
Fenômenos Fisiológicos Bacterianos , Meios de Cultura , Necessidades Nutricionais , Sporosarcina/fisiologia , Carbono/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Técnicas Microbiológicas
15.
Biotechnol Prog ; 34(2): 315-327, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314728

RESUMO

Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7-RNA polymerase-dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3-hydroxybutyryl-CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:315-327, 2018.


Assuntos
Técnicas Bacteriológicas/instrumentação , Escherichia coli/metabolismo , Oxigênio/análise , Proteínas Recombinantes/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Bacillus subtilis , Proteínas de Bactérias/genética , Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , RNA Polimerases Dirigidas por DNA , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Isopropiltiogalactosídeo/farmacologia , Microrganismos Geneticamente Modificados , Sistemas On-Line , Oxigênio/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/genética , Thermus thermophilus/genética , Proteínas Virais
16.
Anal Bioanal Chem ; 410(1): 57-69, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29184998

RESUMO

In contrast to biochemical reactions, which are often carried out under automatic control and maintained overnight, the automation of chemical analysis is usually neglected. Samples are either analyzed in a rudimentary fashion using in situ techniques, or aliquots are withdrawn and stored to facilitate more precise offline measurements, which can result in sampling and storage errors. Therefore, in this study, we implemented automated reaction control, sampling, and analysis. As an example, the activities of xylanases on xylotetraose and soluble xylan were examined using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction was performed in HPLC vials inside a temperature-controlled Dionex™ AS-AP autosampler. It was started automatically when the autosampler pipetted substrate and enzyme solution into the reaction vial. Afterwards, samples from the reaction vial were injected repeatedly for 60 min onto a CarboPac™ PA100 column for analysis. Due to the rapidity of the reaction, the analytical method and the gradient elution of 200 mM sodium hydroxide solution and 100 mM sodium hydroxide with 500 mM sodium acetate were adapted to allow for an overall separation time of 13 min and a detection limit of 0.35-1.83 mg/L (depending on the xylooligomer). This analytical method was applied to measure the soluble short-chain products (xylose, xylobiose, xylotriose, xylotetraose, xylopentaose, and longer xylooligomers) that arise during enzymatic hydrolysis. Based on that, the activities of three endoxylanases (EX) were determined as 294 U/mg for EX from Aspergillus niger, 1.69 U/mg for EX from Bacillus stearothermophilus, and 0.36 U/mg for EX from Bacillus subtilis. Graphical abstract Xylanase activity assay automation.


Assuntos
Aspergillus niger/enzimologia , Cromatografia por Troca Iônica/métodos , Endo-1,4-beta-Xilanases/metabolismo , Ensaios Enzimáticos/métodos , Geobacillus stearothermophilus/enzimologia , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/economia , Endo-1,4-beta-Xilanases/análise , Ensaios Enzimáticos/economia , Hidrólise , Limite de Detecção , Fatores de Tempo , Xilanos/metabolismo
17.
Microb Cell Fact ; 14: 10, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25612616

RESUMO

BACKGROUND: Escherichia coli is commonly used in academia and industry for expressing recombinant proteins because of its well-characterized molecular genetics and the availability of numerous expression vectors and strains. One important issue during recombinant protein production is the so-called 'metabolic burden': the material and energy normally reserved for microbial metabolism which is sapped from the bacterium to produce the recombinant protein. This material and energy drain harms biomass formation and modifies respiration. To the best of our knowledge, no research has investigated so far whether a single amino acid exchange in a recombinant protein affects the metabolic burden phenomenon. Thus, in this study, 15 E. coli BL21(DE3) clones expressing either the fusion tags, a recombinant wild type lipase, or 13 different lipase variants are investigated to quantitatively analyze the respective effects of single amino acid exchanges at different positions on respiration, biomass and protein production of each clone. Therefore, two small-scale online monitoring systems, namely a Respiration Activity MOnitoring System (RAMOS) and a microtiter plate based cultivation system (BioLector) are applied. RESULTS: Upon expression of all enzyme variants, strong variations were found in the Oxygen Transfer Rate (OTR), biomass and protein (lipase) production of the respective E. coli clones. Two distinct patterns of respiration behavior were observed and, so, the clones could be classified into two groups (Type A and B). Potential factors to explain these patterns were evaluated (e.g. plasmid copy number, inclusion body formation). However, no decisive factor could yet be identified. Five distinct cultivation phases could be determined from OTR curves which give real-time information about carbon source consumption, biomass and protein production. In general, it was found that the quantity of product increased with the duration of active respiration. CONCLUSIONS: This work demonstrates that single amino acid exchanges in a recombinant protein influence the metabolic burden during protein production. The small-scale online monitoring devices RAMOS and BioLector enable the real-time detection of even smallest differences in respiration behavior, biomass and protein production in the E. coli clones investigated. Hence, this study underscores the importance of parallel online monitoring systems to unveil the relevance of single amino acid exchanges for the recombinant protein production.


Assuntos
Aminoácidos/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Eletroforese em Gel de Poliacrilamida , Escherichia coli/crescimento & desenvolvimento , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo , Proteínas Recombinantes/genética , Esterol Esterase/genética , Esterol Esterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...